Exercises

Anna Somoza

Exercise 1. Let $M \in \mathbb{Z}^{n \times n}$ be a unimodular matrix.
(i) Show that M is invertible, and that M^{-1} is unimodular.
(ii) Show that if $n=2$, then M is equal to $\pm I_{n}$ or $\pm\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ times a combination of the matrices $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and their inverses.
(iii) Prove that two bases with matrices B and C generate the same lattice if and only if there exists a unimodular matrix $M \in \mathbb{Z}^{n \times n}$ such that $B=C M$.

Exercise 2. Let $\Lambda \subseteq \Lambda^{\prime}$ be two full rank lattices. Prove that if $\operatorname{det} \Lambda=\operatorname{det} \Lambda^{\prime}$, then $\Lambda=\Lambda^{\prime}$. Prove also that if $\Lambda \neq \Lambda^{\prime}$, then $\operatorname{det} \Lambda \geq 2 \operatorname{det} \Lambda^{\prime}$.

Exercise 3. Let Λ be a lattice of dimension n. Show that the number of vectors $x \in \Lambda$ such that $\|x\|=\lambda(\Lambda)$ is upper-bounded by 3^{n}. This number is called the kissing number. One can look at the volume of the open balls centered on these points and with radius $\lambda(\Lambda) / 2$.

Exercise 4. The goal of this exercise is to prove that every lattice Λ of dimension n has at most $2^{O\left(n^{3}\right)}$ reduced bases.
(i) Let $\lambda=\lambda(\Lambda)$ be the minimal distance of Λ, and let $\left(b_{1}, \ldots, b_{n}\right)$ be a reduced basis. Show that $\left\|b_{1}\right\| \leq r$ with $r=2^{O(n)} \lambda$.
(ii) Consider a ball of radius r and the balls of radius $\lambda / 2$. Show that there are at most $2^{O\left(n^{2}\right)}$ points of the lattice of length smaller or equal to r. Conclude on the number of possibilities for b_{1}.
(iii) Consider now the projection $\left(b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right)$ of the vectors $\left(b_{2}, \ldots, b_{n}\right)$ on the hyperplane orthogonal to b_{1}. Show that $\left(b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right)$ is still a reduced basis (for the lattice generated by $\left.\left(b_{2}^{\prime}, \ldots, b_{n}^{\prime}\right)\right)$.
(iv) Show that b_{2}^{\prime} cannot come from more than $2 b_{2}$ of a reduced basis of Λ with b_{1} fixed.
(v) Deduce that the number of possible b_{2} is at most $2^{O(n-1)^{2}}$.
(vi) Conclude by recurrence the claim of the exercise.

Exercise 5. Let Λ be a lattice of dimension n.
(i) Using Minkowski's theorem ${ }^{1}$ with a parallelepiped, show that there exists $x \in \Lambda$ nonzero such that $\|x\|_{\infty} \leq(\operatorname{det} L)^{1 / n}$.

[^0](ii) Show that for this x, we have $\|x\|_{2} \leq \sqrt{n}(\operatorname{det} L)^{1 / n}$.

We will now obtain a weaker, but constructive, result. Let $b_{i}^{*}=b_{i}-\sum_{j<i} \mu_{i j} b_{j}^{*}$.
(iii) Show by induction that we can always take $\mu_{i, i-1} \leq 1 / 2$, replacing b_{i} by $b_{i}^{\prime}=b_{i}-\left\lfloor\mu_{i, i-1}\right\rceil b_{i-1}$ if necessary.
(iv) Show that the condition $\left\|b_{i-1}^{*}\right\|_{2} \leq\left\|b_{i}^{*}+\mu_{i, i-1} b_{i-1}^{*}\right\|_{2}$ can be interpreted geometrically in terms of the projection of b_{i-1} and b_{i} on $\left\langle b_{1}, \ldots b_{i-2}\right\rangle^{\perp}$.
(v) Deduce that the property above is true, swapping b_{i-1} and b_{i} if necessary.

We would like to obtain both properties at the same time. Consider the following algorithm:

```
Algorithm 1: Reduction procedure
    Make all \(\mu_{i, i-1}\) smaller or equal to \(1 / 2\) in absolute value.
    while \(\exists i_{0},\left\|b_{i_{0}-1}^{*}\right\|_{2}>\left\|b_{i_{0}}^{*}+\mu_{i_{0}, i_{0}-1} b_{i_{0}-1}^{*}\right\|_{2}\) do
        Swap \(b_{i_{0}}\) and \(b_{i_{0}-1}\).
        Make all \(\mu_{i, i-1}\) smaller or equal to \(1 / 2\) in absolute value.
```

(vi) Show that the algorithm finishes because the norm tuple $\left(\left\|b_{1}^{*}\right\|_{2}, \ldots,\left\|b_{n}^{*}\right\|_{2}\right)$ decreases strictly on each iteration with respect to the lexicographic order.
(vii) Show that for $i>1$ we have $\frac{3}{4}\left\|b_{i-1}^{*}\right\|_{2}^{2} \leq\left\|b_{i}^{*}\right\|_{2}^{2}$ by the end of the algorithm.
(viii) Using the fact that $\operatorname{det} \Lambda=\prod\left\|b_{i}^{*}\right\|_{2}$, show Hermite's inequality

$$
\left\|b_{1}\right\|_{2} \leq\left(\frac{4}{3}\right)^{(n-1) / 4}(\operatorname{det} \Lambda)^{1 / n}
$$

Exercise 6. Consider the lattice Λ generated by the columns of the following matrix:

$$
B=\left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

We consider $b_{4}^{\prime}=2 b_{4}-b_{1}-b_{2}-b_{3}$. Show that $b_{1}, b_{2}, b_{3}, b_{4}^{\prime}$ are linearly independent, and that they attain the minimal length 2, but that they do not generate the lattice Λ.

Note: In dimension ≥ 5, there exist lattices for which no choice of vectors attaining the minimal length forms a basis of the lattice.

Exercise 7. In dimension 2, consider the following algorithm, where we use $q(u)=\|u\|^{2}$.

```
Algorithm 2: Gauss' algorithm
    input : An ordered basis \((u, v)\) with \(q(u) \leq q(v)\)
    output: A reduced basis of the lattice
    repeat
        \(x=\lfloor\langle u, v\rangle / q(u)\rceil\)
        \(r=v-x u\)
        \(v=u\)
        \(u=r\)
    until \(q(u) \geq q(v)\);
    return \((v, u)\)
```

First we focus on the correctness of the algorithm.
(i) Show that the output (U, V) is a basis of the lattice
(ii) Show that $q(U) \leq q(V)$ and that for all $y \in \mathbb{Z}$ we have $q(V+y U) \geq(V)$.
(iii) Using $q(U+V) \geq q(V)$ and $q(U-V) \geq q(V)$, deduce that $|\langle U, V\rangle| \leq q(U) / 2$.
(iv) Show that $q(U)$ is minimal by proving that if we have $q\left(x_{1} U+x_{2} V\right)<q(U)$ then $x_{1}=$ $x_{2}=0$.
(v) Show that $q(V)$ attains the second minimum, that is, it is not possible to have $q\left(x_{1} U+\right.$ $\left.x_{2} V\right)<q(V)$ with $x_{2} \neq 0$.

Now we focus on the execution time of the algorithm.
(vi) Show that if $x=0$, then it ends loop.
(vii) Prove that $|x|=1$ can only occur on the two first or the last iteration of the algorithm. Do so by contradiction, by showing that then r is not the minimal choice.
(viii) Assume $|x|>1$. Prove that in that case we have $\langle u, v\rangle / q(u) \geq 3 / 2$.
(ix) Let v^{\perp} be the projection of v on $\langle y\rangle^{\perp}$. Prove that $q(v) \geq q\left(v^{\perp}\right)+9 / 4 q(u)$.
(x) Prove that $q(r) \leq q\left(v^{\perp}\right)+1 / 4 q(u)$.
(xi) Deduce that $q(v) \geq q(r)+2 q(u)$, and that if we are not on the last iteration, then $q(v) \geq$ $3 q(r)$.
(xii) Deduce that, except on the first two or the last iteration of the algorithm, $q(u) q(v)$ decreases by a factor of 3 on each iteration. Denote by λ_{1} the minimum of the lattice, and u_{0}, v_{0} the input vectors, and prove that the number of iterations is at most $2 \log _{3} q\left(v_{0}\right) / \lambda_{1}^{2}+2=$ $O\left(\log q\left(v_{0}\right)\right)$.
(xiii) The cost of each step inside the loop is upper-bounded by the cost of the computation of x, that is an euclidean division. If we write $a=b q+r$, then the cost is $O\left(\log (a)^{2}\right)$. Deduce the total cost of the algorithm.

[^0]: ${ }^{1}$ You may consider the following variant of Minkowski's Theorem:
 Corollary (A variant of Minkowski's theorem). Let C be a compact centrally-symmetric convex set in \mathbb{R}^{n} such that $\operatorname{vol} C \geq 2^{n} \operatorname{det} \Lambda$. Then there exists a nonzero element of Λ in C.

