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1 Definitions

A lattice Λ is a free Z-module of finite rank. Given a linearly-independent basis (bi)1≤i≤n of Rd
with n ≤ d, we have

Λ =

{
n∑
i=1

xibi : xi ∈ Z

}
.

In general, we will consider the case n = d.

b1

b2
c1

c2

Figure 1: A lattice in R2, which is generated both by {b1, b2}, and by {c1, c2}.

In general, they are the result of applying a nonsingular transformation to the integer lat-
tice Zn, that is,

Λ = {Bx : x ∈ Zn}

for B ∈ Rd×n the matrix that has b1, . . . , bn as columns.
Note that the same lattice can be represented by several different bases, see Figure 1.

Definition 1.1. A unimodular matrix is a square integer matrix with determinant ±1.
Equivalently, it is a matrix U ∈ Zn×n such that there exists a matrix V ∈ Zn×n that satisfies

UV = V U = In.

Proposition 1.2. Two bases with matrices B and C respectively generate the same lattice if
and only if there exists a unimodular matrix M ∈ Zn×n such that B = CM .

Proof. Start by assuming B = CM for some unimodular matrix M , so we also have C = BM−1.
Then, since both M and M−1 are integer matrices, it follows that Λ(B) ⊆ Λ(C) and Λ(C) ⊆
Λ(B),

Now assume that B and C are two bases for the same lattice Λ. Then, by definition,
there exist integer matrices M,N ∈ Zn×n such that B = CM and C = BN . It follows that
B = BNM or, equivalently, B(In−NM) = 0. Since B is nonsingular, we obtain In−NM = 0.
Analogously one gets In −MN = 0, so we conclude that M is unimodular.
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2 Gram-Schmidt orthogonalization (GSO)

Definition 2.1. A basis (bi)1≤i≤n is called orthogonal (with respect to a scalar product 〈·, ·〉)
if we have 〈bi, bj〉 = 0 for all i 6= j.

We define the orthogonalization of a basis (bi)1≤i≤n of Rn as a basis (b∗i )1≤i≤n such that b∗i
is the component of bi that is orthogonal to the space generated by b1, . . . , bi−1.

We compute it iteratively with the following formula:

b∗i = bi −
∑
j<i

µijb
∗
j , (GSO)

where µij = 〈bi, b∗j 〉/〈b∗j , b∗j 〉.

Proposition 2.2. The basis obtained with (GSO) is orthogonal.

Proof. We prove it by induction.

• By definition, b∗1 is orthogonal.

• Assume that for a fixed i, the family (b∗i )1≤i≤i−1 is orthogonal, that is,

〈b∗r , b∗s〉 =

{
0 if r 6= s,

〈b∗r , b∗r〉 if r = s;

and define b∗i as in (GSO). Then, for r in 1, . . . , i− 1, we have

〈b∗i , b∗r〉 = 〈bi −
∑
j<i

µijb
∗
j , b
∗
r〉 = 〈bi, b∗r〉 −

∑
j<i

µij〈b∗j , b∗r〉 = 〈bi, b∗r〉 − µir〈b∗r , b∗r〉 = 0,

hence we conclude that the family (b∗i )1≤i≤i is also orthogonal.

Let B, B∗ be respectively the matrices for the bases (bi)1≤i≤n, (b∗i )1≤i≤n. Then, the matrix

A =


1 µ2,1 · · · µn,1

0 1
. . .

...
...

. . .
. . . µn,n−1

0 · · · 0 1

 (1)

satisfies B = B∗A.

Remark 2.3. Given a lattice basis, the basis obtained with (GSO) is not necessarily a lattice
basis. See Figure 2.

Remark 2.4. We do not consider the orthonormalization, that is, scaling the generators to
have norm 1, to avoid taking square roots. Therefore, if the original basis is defined over Q ,
then its GSO is also defined over Q.
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Figure 2: The GSO of the basis {b1, b2} is not a basis of the original lattice because b∗2 is not
an element of the original lattice.

3 Determinant of a lattice

We define the Gram matrix of the basis (bi)1≤i≤n as the matrix

Gram(b1, . . . , bn) = (〈bi, bj〉)1≤i,j≤n .

Equivalently, one writes
Gram(b1, . . . , bn) = TBB.

The Gram matrix is symmetric and positive definite. We write

det Λ =
√

det Gram(b1, . . . , bn).

Remark 3.1. Recall that B is a (d × n)-matrix, hence not necessarily square. When d = n,
then we have

det Λ = |detB|.

Proposition 3.2. The value det Λ does not depend on the basis (bi)i, and it is equal to the
product of the norms of the elements b∗i of the GSO of (bi)i.

Proof. To prove that the determinant of the lattice is independent on the basis, let B,C be
the matrices of two bases of a lattice Λ. By Proposition 1.2 there exists a unimodular matrix
M ∈ Zn×n that satisfies C = BM . Since by definition detM = ±1, the claim follows from

det Gram(c1, . . . , cn) = det(TCC) = det(TMTBBM) = (detM)2 det Gram(b1, . . . , bn).

To prove the second claim, recall that by Proposition 2.2, we have B = B∗A for A as defined
in (1). Since A has determinant 1, by an equivalent argument we get

det Λ =
√

det Gram(b∗1, . . . , b
∗
n) =

√√√√√√det

〈b
∗
1, b
∗
1〉

. . .

〈b∗n, b∗n〉

.
The result follows.

We define the fundamental domain of a lattice Λ(B) as the set

F(Λ) =

{
n∑
i=1

λibi : 0 ≤ λi < 1

}
,

and define volF(Λ) = det Λ.
The following result is obtained immediately from the inequality ||b∗i || ≤ ||bi||.
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b1

b2

Figure 3: The fundamental domain of the lattice Λ generated by b1, b2.

Corollary 3.3 (Hadamard’s inequality). For any lattice Λ(B), we have

det Λ ≤
n∏
i=1

||bi||.

4 Minimum of a lattice

We define the minimum of a lattice Λ, denoted λ(Λ), as the minimal length of a nonzero vector
of Λ.

Finding an element x ∈ Λ(B) such that ||x|| = λ(Λ) is an NP-complete problem.

Proposition 4.1. Let Λ be a lattice with basis (bi)1≤i≤n and let (b∗i )1≤i≤n be its Gram-Schmidt
orthogonalization. We have

λ(Λ) ≥ min
1≤i≤n

||b∗i || > 0.

Proof. Let x ∈ Zn be a nonzero integer vector, let B be the matrix associated to (bi)i, and
consider the element of Λ given by Bx. We will show that ||Bx|| ≥ min1≤i≤n ||b∗i ||.

To that end, let j be the largest index with xj 6= 0. Using that b∗j is orthogonal to all bi
with i < j, we obtain

|〈Bx, b∗j 〉| = |〈
n∑
i=1

xibi, b
∗
j 〉| = |xj ||〈b∗j , b∗j 〉| = |xj | ||b∗j ||2.

We also have that 〈Bx, b∗j 〉 ≤ ||Bx|| ||b∗j ||, hence we conclude

||Bx|| ≥ |xj | ||b∗j || ≥ min
1≤i≤n

||b∗i || > 0.

Given x, y ∈ Rn, we write x ≡ y mod Λ if and only if x− y is an element of Λ.

Lemma 4.2. Let S be a measurable set in Rn such that volS > det Λ. Then there exist x, y ∈ S
such that x ≡ y mod Λ.

Proof. For every x ∈ Λ consider the set Sx = X ∩ (x + F(Λ)), which define a partition of the
set S. In particular, we have

volS =
∑
x∈Λ

volSx.
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If we now consider the translations S′x = Sx − x = (S − x) ∩ F(Λ), then all the sets S′x are
contained in the fundamental domain of the lattice, and it is clear that volSx = volS′x.

Therefore, since we have S′x ⊆ F(Λ) and also det Λ = volF(Λ) < volS =
∑

x∈Λ volS′x, we
conclude that the sets S′x cannot be disjoint, that is, there exist x, y ∈ Λ and z ∈ F(Λ) such
that z ∈ S′x ∩ S′y.

If we consider the opposite translation, we obtain two points z1 = z+x ∈ Sx, z2 = z+y ∈ Sy
such that their difference z1 − z2 = x− y is an element of the lattice.

Theorem 4.3 (Minkowski). Let C be a centrally-symmetric convex set in Rn such that volC >
2n det Λ. Then there exists a nonzero element of Λ in C.

Proof. Start by considering the set
C

2
= {x : 2x ∈ C}. We have

vol
C

2
=

vol(C)

2n
> det Λ,

hence by Lemma 4.2 there exist z1, z2 ∈ C
2 such that l = z1− z2 ∈ Λ or, equivalently, that there

exist c1, c2 ∈ C such that

l =
1

2
(c1 − c2).

That l is an element of C follows from it being centrally-symmetric and convex.

Theorem 4.4. Let Λ be a full-rank lattice in Rn. Then we have

λ(Λ) ≤
√
n(det Λ)1/n.

Proof. Consider the open ball B = B(0, λ(Λ)), which by definition contains no nonzero lattice
points. Then, by Theorem 4.3, we have volB ≤ 2n det Λ.

Consider also a cube C of side length 2λ(Λ)√
n

centered at the origin, and note that it is

contained in B. Altogether we obtain(
2λ(Λ)√

n

)n
≤ volB ≤ 2n det Λ,

and rearranging the inequality above we obtain the desired result.

This result motivates the study of the so-called Hermite constant,

γn = sup
Λ,dim Λ=n

λ(Λ)2

(det Λ)2/n
.

To this day, this is only known for some values of n, as shown on the following table:

n 1 2 3 4 5 6 7 8 24

γnn 1 4/3 2 4 8 64/3 64 256 424

5 Reduced bases

The goal for the following sections is to present algorithms to obtain reduced bases for a given
lattice.

Definition 5.1. We will say that a basis (bi)1≤i≤n of Λ is proper if the coefficients of the matrix
A obtained with the (GSO) satisfy |µij | ≤ 1

2 for i > j.
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Algorithm 1: Proprification algorithm

input : A basis (bi)1≤i≤n of Λ
output: A proper basis (ci)1≤i≤n of Λ such that ci = bi +

∑
j<i xjbj .

Compute the GSO of (bi) and note the coefficients µij .
for i = 1 to n do

for j = i− 1 to 1 do
xj = bµije
bi = bi − xjbj
µij = µij − xj
for k = 1 to j − 1 do

µik = µik − xjµjk

return (bi)1≤i≤n

Proof. Observe that the changes made at each step do not change the final GSO basis. The
goal is to prove that the output base is proper. We proceed by induction.

• The base case is true by definition.

• Assume that for a fixed pair (i, j), the family c1, . . . , ci−1 is proper, that is, for every
k < l ≤ i − 1 we have |µlk| ≤ 1

2 , and for every j + 1 ≤ k ≤ i − 1 we also have |µik| ≤ 1
2 .

We will now prove |µij | ≤ 1
2 . Since we have

bi = b∗i +
∑
k<i

µikb
∗
k

we write

bi − bµijebj =

(
b∗i +

∑
k<i

µikb
∗
k

)
− bµije

b∗j +
∑
k<j

µjkb
∗
k


= b∗i +

∑
k<i

µikb
∗
k − bµijeb∗j − bµije

∑
k<j

µjkb
∗
k

= b∗i +
i−1∑

k=j+1

µikb
∗
k + (µij − bµije) b∗j +

∑
k<j

(µik − bµijeµjk) b∗k.

The new value of µij is then µij − bµije, so we obtain |µij | ≤ 1
2 .

Definition 5.2. We will say that a basis (bi)1≤i≤n of Λ is Siegel-reduced if it satisfies

‖b∗i ‖2 ≤ 2‖b∗i+1‖2

for every i < n.

In the definition of LLL-reduced basis there is a more general condition, known as the Lovász
condition, in terms of a parameter δ ∈ ]1

4 , 1[ :

δ‖b∗i−1‖2 ≤ ‖b∗i + µi,i−1b
∗
i−1‖2.

The condition in the definition of Siegel-reduced is equivalent to the Lovász condition when
δ = 3

4 , and we will always consider this case for the current course.
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Remark 5.3. For a Siegel-reduced basis, we have

‖b1‖2 = ‖b∗1‖2 ≤ 2‖b∗2‖2 ≤ · · · ≤ 2n−1‖b∗n‖2,

from where we obtain

‖b1‖n ≤

(
n∏
i=1

‖b∗i ‖

)
(
√

2)
n(n−1)

2 = 2
n(n−1)

4 det Λ.

Definition 5.4. We will say that a basis (bi)1≤i≤n of Λ is reduced if it is both Siegel-reduced
and proper.

Lemma 5.5. Let (bi)1≤i≤n be a reduced basis. Then it satisfies

1 ≤ ‖bi‖2

‖b∗i ‖2
≤ 2i−1.

Proof. Since we have bi = b∗i +
∑

j<i µijb
∗
j , we can write

‖bi‖2

‖b∗i ‖2
= 1 +

∑
j<i

µ2
ij

‖b∗j‖2

‖b∗i ‖2
.

From the fact that the basis is Siegel-reduced we obtain ‖b∗j‖2 ≤ 2i−j‖b∗i ‖2. On the other

hand, since the basis is proper we also have |µij | ≤ 1
2 . We conclude

‖bi‖2

‖b∗i ‖2
≤ 1 +

i−1∑
j=1

1

4
2i−j =

1

2
+ 2i−2 ≤ 2i−2 + 2i−2 = 2i−1.

Theorem 5.6. Let x ∈ Λ\{0}, and let (bi)1≤i≤n be a reduced basis of Λ. Then we have:

(i) ‖b1‖ ≤ 2(n−1)/2‖x‖, and

(ii) if x1, x2, · · · , xt are linearly-independent elements of Λ, then ‖bt‖ ≤ 2(n−1)/2 max
i≤t
‖xi‖.

Proof. (i) Let b∗k be the vector of the GSO that attains the minimum norm. Given that
the basis (bi) is Siegel-reduced, we have ‖b1‖2 = ‖b∗1‖2 ≤ 2k−1‖b∗k‖2, and it follows from
Proposition 4.1 that we have ‖b∗k‖2 ≤ λ(Λ)2 ≤ ‖x‖2. Altogether we obtain

‖b1‖2 ≤ 2k−1‖b∗k‖2 ≤ 2k−1‖x‖2 ≤ 2n−1‖x‖2.

(ii) Once again, since the basis (bi)i is Siegel-reduced, we have

‖b∗j‖2 ≤ 2‖b∗j+1‖2 ≤ · · · ≤ 2i−j‖b∗i ‖2.

Moreover, for every j let us write xj =
∑n

i=1 rijbj , with rij ∈ Z, and let I(j) denote
the biggest i such that rij 6= 0. By a reasoning analogous to the one in the proof of
Proposition 4.1 we have

‖xj‖2 ≥ ‖b∗I(j)‖
2. (2)

Changing the order of the elements xj if necessary, we can always assume I(1) ≤ · · · ≤ I(t).

Next we prove by induction that j ≤ I(j).

• For the base case, the claim is vacuously true: 1 ≤ I(1).
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• Assume that for a given j the condition j − 1 ≤ I(j − 1) is satisfied, and recall that
we have I(j − 1) ≤ I(j). So we write j − 1 ≤ I(j). If I(j) = j − 1, then we have

〈x1, · · · , xj〉 ⊆ 〈b1, · · · , bj−1〉,

what contradicts the independence of the elements (xi). So we conclude that j ≤ I(j).

Next, by Lemma 5.5 we have ‖bj‖2 ≤ 2j−1‖b∗j‖2, so we write

‖bj‖2 ≤ 2j−12I(j)−j‖b∗I(j)‖
2 = 2I(j)−1‖b∗I(j)‖

2,

and together with (2) we obtain

‖bj‖2 ≤ 2n−1‖xj‖2 ≤ 2n−1 max
i≤t
‖xi‖.

Since the previous equation holds for all j ≤ t, the claim follows.

Corollary 5.7. Let x ∈ Λ\{0} and let (bi)1≤i≤n be a reduced basis. Then we have

‖b1‖ ≤ 2(n−1)/2λ(Λ).

6 The LLL algorithm and some applications

Named after Arjen Lenstra, Hendrik Lenstra and László Lovász, the LLL algorithm computes
a reduced lattice base in polynomial time.

Algorithm 2: The LLL algorithm (1982)

input : A basis (bi)1≤i≤n of a lattice Λ ⊆ Rn.
output: A reduced basis of Λ.

k = 2
compute the GSO of (bi)1≤i≤n, (b∗i )1≤i≤n
while k ≤ n do

for j = k − 1 to 1 do // Corresponds to j-loop of Algorithm 1, for i = k.
xj = bµkje
bk = bk − xjbj
µkj = µkj − xj
for l = 1 to j − 1 do

µkl = µkl − xjµjl

if k > 1 and ‖b∗k−1‖2 > 2‖b∗k‖2 then
swap(bk−1, bk)
update (b∗i )1≤i≤n
k = k − 1

else
k = k + 1

return (bi)1≤i≤n

6.1 Complexity of the algorithm

In order to simplify the computation of the complexity we make the benign assumption that
the coefficients of the vectors (bi)1≤i≤n in the base are integers.
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The algorithm alternates two phases: the proprification phase (the j-loop) and the swap
phase (the if-else clause). The first phase changes the vectors (bi)i to guarantee that the basis
(b1, . . . , bk) is proper, and the second phase swaps the elements bk−1, bk in the base if they do
not satisfy the Siegel condition in Defintion 5.2, changing the GSO basis.

If the algorithm terminates, then the output is correct by construction. We want to prove
that it terminates in polynomial time.

To do so we first bound the number of iterations and then bound the size of the data.

Notation For this section, we will use the following notation:

• A = max1≤i≤n ‖bi‖2,

• Λi = 〈b1, . . . , bi〉Z,

• Di = (det Λi)
2 =

∏i
j=1 ‖b∗j‖2,

• D =
∏n
i=1Di

and using Corollary 3.3 for every Λi we obtain

D ≤
n∏
i=1

i∏
j=1

‖bi‖2 = ‖b1‖2n‖b2‖2(n−1) . . . ‖bn‖2 ≤ An(n+1)/2.

Number of iterations

We show how a swap changes the values of (Di)1≤i≤n and D, and use it to bound the number
of times that it can happen.

Lemma 6.1. The value of D decreases by a factor 3
4 at each iteration.

Proof. As we discussed in the proof of Algorithm 1, the proprification phase does no change the
GSO basis, hence it does not affect Di or D.

Therefore, all the changes happen at the swap phase. Note that for a given k, the swap of
bk−1 and bk happens if and only if

‖b∗k−1‖2 > 2‖b∗k‖2.

In that case, the lattices Λi remain unchanged for all i 6= k − 1, hence the only Di that
changes is Dk−1 = (det Λk−1)2. Let us denote as D′, D′i, b

′
i the values of D,Di, bi after the swap.

Then we have
D′

D
=
D′k−1

Dk−1
=
‖b′∗k−1‖2

‖b∗k−1‖2
. (3)

We write b′∗k−1 in terms of (bi)1≤i≤n.

b′∗k−1 = b′k−1 −
∑
j<k−1

µ′k−1,jb
′∗
j = bk −

∑
j<k−1

µkjb
∗
j = bk + µk,k−1b

∗
k−1.

Going back to (3) we conclude

D′

D
=
‖b′∗k−1‖2

‖b∗k−1‖2
=
‖b∗k‖2

‖b8k−18‖2
+ µ2

k,k−1 ≤
1

2
+

1

4
=

3

4
. (4)
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Let D(k) denote the value of D after k iterations, and note that it is a positive integer. By
the previous lemma we have

1 ≤ D(k) ≤
(

3

4

)k
D ≤

(
3

4

)k
An(n+1)/2

hence by taking logarithms we obtain

0 ≤ k log
3

4
+
n(n+ 1)

2
logA,

so we conclude k = O(n2 logA).
We also observe that an iteration has O(n2) operations over Z, and conclude that there are

O(n4 logA) operations in total.

Next we focus on bounding the size of the integers in use.

Lemma 6.2. For every l < k ≤ n we have

Dk−1b
∗
k ∈ Zn and Dkµkl ∈ Z.

Proof. Consider the relation

b∗k = bk −
∑
l<k

νklbl, νkl ∈ Q,

and consider the scalar products

0 = 〈bt, b∗k〉 = 〈bt, bk〉 −
∑
l<k

νkl〈bt, bl〉 for 1 ≤ t < k.

We write this set of equations as a linear system with matrices

TBk−1Bk−1(νkl)l = TBk−1bk = v ∈ Zk−1

where G = TBk−1Bk−1 is the Gram matrix of the basis (bi)1≤i≤k−1, and detG = Dk−1. We
obtain

Dk−1(νkl)l = detG · (νkl)l = detG ·G−1v = adj(G)v ∈ Zk−1,

where we use bi ∈ Z.
It follows that for all l < k we have Dk−1νkl ∈ Z, hence we conclude

Dk−1b
∗
k = Dk−1bk −

∑
l<k

(Dk−1νkl)bl ∈ Zn.

For the second claim we write

Dlµkl = Dl−1‖b∗l ‖2
〈bk, b∗l 〉
〈b∗l , b∗l 〉

= 〈bk, Dl−1b
∗
l 〉 ∈ Z.

Lemma 6.3. Throughout the LLL algorithm, the value M = max1≤i≤n ‖b∗i ‖ does not increase.

Proof. It is once again true that the proprification phase does not affect the vectors in (b∗i )1≤i≤n.
As for the swap phase, it follows from Equation (4) that

‖b′∗k−1‖2 = ‖b∗k‖2 + µ2
k,k−1‖b∗k−1‖2 ≤

3

4
‖b∗k−1‖2 ≤M2.
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Next we focus on b′∗k . Recall that the value

(det Λ′)2 =
n∏
i=1

‖b′∗i ‖2

is invariant, so we have

‖b∗k−1‖2‖b∗k‖2 = ‖b′∗k−1‖2‖b′∗k ‖2 ≥ ‖b∗k‖2‖b′∗k ‖2,

hence
‖b′∗k ‖2 ≤ ‖b∗k−1‖2 ≤M2.

It follows from the lemmas above that the denominators in b∗k and µkl are bounded by
Dn ≤ An.

Next we bound ‖bk‖ and |µij |. On the one hand we have

|µij |2 =

(
〈bi, b∗j 〉
‖b∗j‖2

)2

≤ ‖bi‖
2

‖b∗j‖2
,

and

‖b∗j‖2 =
Dj

Dj−1
≥ 1

Dj−1
,

so we conclude
|µij |2 ≤ Dj−1‖bi‖2. (5)

Lemma 6.4. During the proprification phase we have

‖bi‖2 ≤ n2(4A)n+1,

and elsewhere we have
‖bi‖2 ≤ nA

.

Proof. At the start of the algorithm we have, by definition of A, that

‖bi‖ ≤ A ≤ nA.

Recall the definition of bi in terms of (b∗i )1≤i≤n,

bi = b∗i +
∑
j<i

µijb
∗
j

and define µii = 1 so that we can write b∗i inside the summation. Let mi = max1≤j≤i |µij | and
consider

‖bi‖ =
i∑

j=1

|µij |2‖b∗j‖2 ≤ nm2
iA

Whenever we are outside of the proprification phase we have mi = |µii| = 1 since for j < i
we have |µij | ≤ 1/2.
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Now for the proprification phase, at the beginning of an iteration we have

m2
i = max

1≤j≤n
µ2
ij ≤ max

1≤j≤n
Dj−1‖bi‖2 ≤ An−1 · nA,

where we are using that the vectors (bi)i are unchanged since the end of the previous proprifi-
cation phase, and hence they satisfy the bound ‖bi‖2 ≤ nA.

Now let j < i, and assume that the basis is already proper for l > j, that is, |µil| ≤ 1/2.
We want to see how the value of mi changes when we update the values µil with respect to xj
for l ≤ j.

|µil − xjµjl| ≤ |µil|+ |xj | · |µkl| ≤ mi + (mi +
1

2
) · 1

2
≤ 3

2
mi +

1

4
≤ 2mi.

It follows that on a proprification phase, the value of mi may increase by a factor of up to
2i−1 ≤ 2n, so we conclude

m2
i ≤ 22nAnn ≤ n(4A)n

hence we obtain the bound on the claim.

If we summarize all the bonds that we have found, we obtain

‖bk‖ ≤ n(4A)(n+1)/2, ‖Dk−1b
∗
k‖ ≤ A(2n+1)/2, |Dlµkl| ≤ AnD

1/2
l−1‖bk‖ ≤ A

nAn/2n(4A)(n+1)/2.

All in all, the integers in question are of the order Õ(n logA).

Theorem 6.5. Let A = max1≤i≤n ‖bi‖2. Then, the LLL algorithm

• finishes in O(n4 logA) operations over the integers of size Õ(n logA),

• requires Õ(n5 log2A) binary operations, and

• requires Õ(n3 logA) bits of space.

6.2 An application: The minimal polynomial

Theorem 6.6. Let z ∈ C and assume that there exists an irreducible polynomial P =
∑n

k=0 akx
k ∈

Z[x] that satisfies P (z) = 0 and ‖P‖∞ = max1≤k≤n |ak| < a, and that we can compute
z̃(ε) ∈ Q(i) sich that |z − z̃| < ε for all ε > 0 with

log

(
1

ε

)
= O(n2 logA).

Then, we can find P in polynomial time, O(n logA).

Corollary 6.7. We can factor in Q[x] in polynomial time.

Proof. Consider z̃ an approximation of a root z of P , and compute its minimal polynomial D.
(We can bound ‖D‖∞ in terms of P with Mignotte’s bound). Then, either P is irreducible,
that is, we have D = P , or D is a factor of P and we can repeat the process with P/D.

Idea of the proof of Theorem 6.6. We consider the lattice Λ generated by the columns of

B =



1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1
C Re(z̃n) · · · C Re(z̃) C
C Im(z̃n) · · · C Im(z̃) 0
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where C is a very big number.
Now let

v =

(
λn, . . . , λ0, C Re

(
n∑
k=0

λkz̃
k

)
, C Im

(
n∑
k=0

λkz̃
k

))
be the first vector of a reduced basis of Λ.

For it to be short, we need

|C| ·

∣∣∣∣∣Re

(
n∑
k=0

λkz̃
k

)∣∣∣∣∣ , |C| ·
∣∣∣∣∣Im

(
n∑
k=0

λkz̃
k

)∣∣∣∣∣
to be small, so if C is big enough, then they are zero, and we conclude that

Q(x) =
n∑
k=0

λkx
k

is the minimal polynomial of z.

13
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